intersil

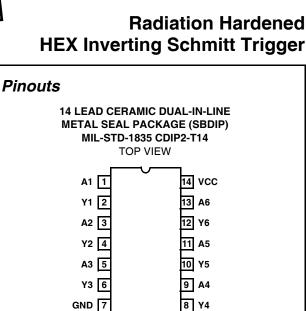
NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc

March 2007

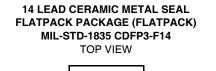
Features

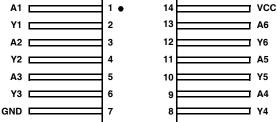
- 3 Micron Radiation Hardened SOS CMOS
- Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- Cosmic Ray Upset Rate 2 x 10⁻⁹ Errors/Bit Day
- Latch-Up Free Under Any Conditions
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- Input Current Levels Ii \leq 5µA at VOL, VOH

Description


The Intersil HCTS14MS is a Radiation Hardened HEX Inverting Schmitt trigger. A high on any input forces the output to a Low state.

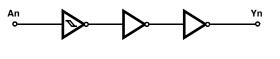
The HCTS14MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.


The HCTS14MS is supplied in a 14 lead Ceramic flatpack Package (K suffix) or a 14 lead SBDIP Package (D suffix).


Ordering Information

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS14DMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead SBDIP
HCTS14KMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead Ceramic Flatpack
HCTS14D/ Sample	+25°C	Sample	14 Lead SBDIP
HCTS14K/ Sample	+25°C	Sample	14 Lead Ceramic Flatpack
HCTS14HMSR	+25°C	Die	Die

HCTS14MS


TRUTH TABLE

INPUTS An	OUTPUTS Yn
L	н
Н	L

NOTE: L = Logic Level Low,

H = Logic level High

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark of Intersil

1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002, 2007. All Rights Reserved

1

Absolute Maximum Ratings

Reliability Information

Supply Voltage	0.5V to +7.0V
Input Voltage Range, All Inputs	0.5V to VCC +0.5V
DC Input Current, Any One Input	±10mA
DC Drain Current, Any One Output	±25mA
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)	65°C to +150°C
Lead Temperature (Soldering 10sec)	+265°C
Junction Temperature (TJ)	+175°C
ESD Classification	Class 1

Thermal Resistance SBDIP Package	θ _{JA} 74°C/W	θ _{JC} 24°C/W
Ceramic Flatpack Package	116ºC/W	30°C/W
Maximum Package Power Dissipation at +12	5°C Ambien	t
SBDIP Package		0.66W
Ceramic Flatpack Package		0.43W
If device power exceeds package dissipati	on capabili	ty, provide
heat sinking or derate linearly at the following	rate:	
SBDIP Package	1	3.5mW/ºC
Ceramic Flatpack Package		8.6mW/ ^o C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage (VCC)	+4.5V to +5.5V
Input Rise and Fall Times at 4.5V VCC (TR, TF)	. Unlimited Max
Operating Temperature Range (T _A)	55°C to +125°C

 Input Low Voltage (VIL).
 0.0V to 0.5V

 Input High Voltage (VIH).
 VCC/2 to VCC

			GROUP		LIN	IITS	
PARAMETER SYMBOL		(NOTE 1) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	МАХ	UNITS
Quiescent Current	ICC	VCC = 5.5V,	1	+25°C	-	10	μA
		VIN = VCC or GND	2, 3	+125°C, -55°C	-	200	μA
Output Current	IOL	VCC = 4.5V, VIH = 4.5V,	1	+25°C	4.8	-	mA
(Sink)		VOUT = 0.4V, VIL = 0V	2, 3	+125°C, -55°C	4.0	-	mA
Output Current	ЮН	VCC = 4.5V, VIH = 4.5V,	1	+25°C	-4.8	-	mA
(Source)		VOUT = VCC -0.4V, VIL = 0V	2, 3	+125°C, -55°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50µA, VIL = 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		$\label{eq:VCC} \begin{array}{l} {\sf VCC} = 5.5{\sf V}, {\sf VIH} = 2.75{\sf V}, \\ {\sf IOL} = 50\mu{\sf A}, {\sf VIL} = 0.5{\sf V} \end{array}$	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	$\label{eq:VCC} \begin{array}{l} \text{VCC} = 4.5\text{V}, \mbox{ VIH} = 2.25\text{V}, \\ \mbox{IOH} = -50 \mu \text{A}, \mbox{ VIL} = 0.5\text{V} \end{array}$	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		$\label{eq:VCC} \begin{array}{l} \text{VCC} = 5.5\text{V}, \mbox{ VIH} = 2.75\text{V}, \\ \mbox{IOH} = -50 \mu \text{A}, \mbox{ VIL} = 0.5\text{V} \end{array}$	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage	IIN	VCC = 5.5V, $VIN = VCC$ or	1	+25°C	-0.5	0.5	μA
Current		GND	2, 3	+125°C, -55°C	-5.0	5.0	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.5V	7, 8A, 8B	+25°C, +125°C, -55°C	4.0	0.5	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages reference to device GND.

2. For functional tests, VO $\geq 4.0V$ is recognized as a logic "1", and VO $\leq 0.5V$ is recognized as a logic "0".

			GROUP		LIMITS		
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	МАХ	UNITS
Propagation Delay	TPHL	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	19	ns
		VIL = 0V	10, 11	+125°C, -55°C	2	21	ns
	TPLH	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	25	ns
		VIL = 0V	10, 11	+125°C, -55°C	2	26	ns
Input Switch Point	VT+	VCC = 4.5V	9	+25°C	0.5	2.25	V
			10, 11	+125°C, -55°C	0.5	2.25	V
	VT-	VCC = 4.5V	9	+25°C	0.5	2.25	V
			10, 11	+125°C, -55°C	0.5	2.25	V
	VH	VCC = 4.5V	9	+25°C	0.1	1.40	V
			10, 11	+125°C, -55°C	0.1	1.40	V

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

TABLE 3.	ELECTRICAL PERFORMANCE CHARACTERISTICS
TABLE 0.	

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Capacitance Power	CPD	VCC = 5.0V, VIH = 5.0V,	1	+25°C	-	26	pF
Dissipation		VIL = 0V, f = 1MHz	1	+125°C, -55°C	-	39	pF
Input Capacitance	CIN	VCC = 5.0V, VIH = 5.0V,	1	+25°C	-	10	pF
		VIL = 0V, f = 1MHz	1	+125°C	-	10	pF
Output Transition	TTHL	VCC = 4.5V, VIH = 4.5V,	1	+25°C	-	15	ns
Time	TTLH	VIL = 0V	1	+125°C	-	22	ns

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)		200K RAD LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.2	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	4.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V and 5.5V, VIH = VCC/2 VIL = 0.4V at 200K RAD, IOL = 50μA	+25°C	-	0.1	V

		(NOTES 1, 2)		200K RAD LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage High	VOH	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.4V at 200K RAD, IOH = -50μA	+25ºC	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.4V at 200K RAD, (Note 3)	+25°C	-	-	-
Propagation Delay	TPHL	VCC = 4.5V	+25°C	2	21	ns
	TPLH	VCC = 4.5V	+25°C	2	31	ns
Input Switch Points	VT+	VCC = 4.5	+25°C	0.40	2.25	V
	VT-	VCC = 4.5	+25°C	0.40	2.25	V
	VH	VCC = 4.5	+25°C	0.10	1.40	V

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = VCC.

3. For functional tests, VO \geq 4.0V is recognized as a logic "1", and VO \leq 0.5V is recognized as a logic "0".

TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	3 μΑ
IOL/IOH	5	-15% of 0 Hour

TABLE 6. APPLICABLE SUBGROUPS

		GROUP A SUBGROUPS		
CONFORMANCE GROUPS	MIL-STD-883 METHOD	TESTED FOR -Q	RECORDED FOR -Q	
Initial Test	100% 5004	1, 7, 9	1 (Note 2)	
Interim Test	100% 5004	1, 7, 9, Δ	1, ∆ (Note 2)	
PDA	100% 5004	1, 7, Δ		
Final Test	100% 5004	2, 3, 8A, 8B, 10, 11		
Group A (Note 1)	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Subgroup B5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, ∆	1, 2, 3, Δ (Note 2)	
Subgroup B6	Sample 5005	1, 7, 9		
Group D	Sample 5005	1, 7, 9		

NOTES:

1. Alternate Group A testing in accordance with MIL-STD-883 Method 5005 may be exercised.

2. Table 5 parameters only.

Specifications HCTS14MS

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND) RECORD
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

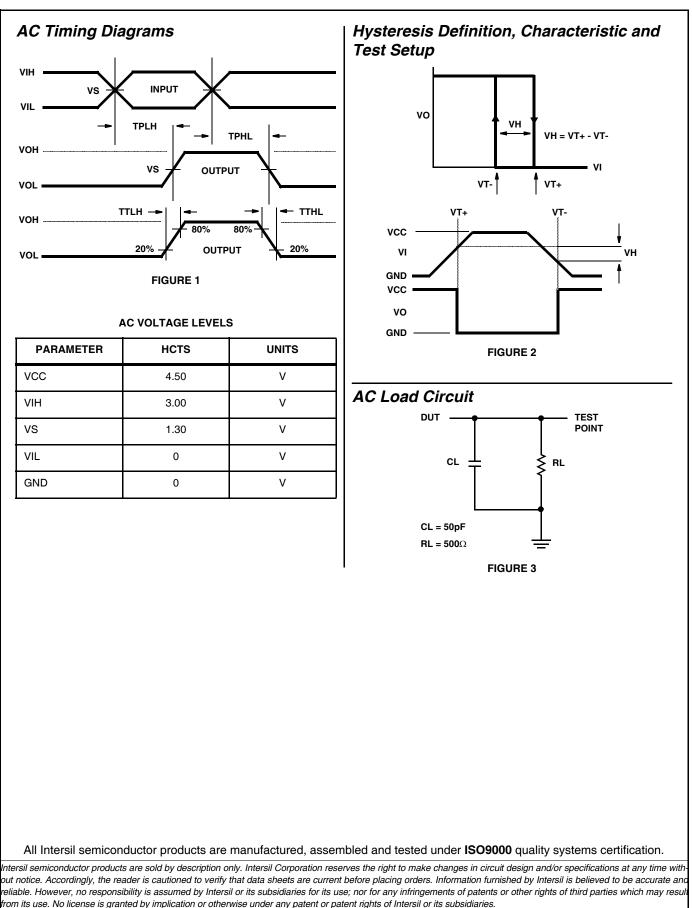
				OSCILI	ATOR
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	$\text{VCC}=\text{6V}\pm\text{0.5V}$	50kHz	25kHz
STATIC BURN-IN I TEST CONDITIONS (Note 1)					
2, 4, 6, 8, 10, 12	1, 3, 5, 7, 9, 11, 13	-	14	-	-
STATIC BURN-IN II TEST CONNECTIONS (Note 1)					
2, 4, 6, 8, 10, 12	7	-	1, 3, 5, 9, 11, 13, 14	-	-
DYNAMIC BURN-IN I TEST CONNECTIONS (Note 2)					
-	7	2, 4, 6, 8, 10, 12	14	1, 3, 5, 9, 11, 13	-

NOTES:

2. Each pin except VCC and GND will have a resistor of $1k\Omega\pm5\%$ for dynamic burn-in.

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	VCC = 5V \pm 0.5V
2, 4, 6, 8, 10, 12	7	1, 3, 5, 9, 11, 13, 14


NOTE: Each pin except VCC and GND will have a resistor of $47k\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

^{1.} Each pin except VCC and GND will have a resistor of $10 k\Omega \pm 5\%$ for static burn-in.

Intersil Space Level Product Flow - 'MS'			
Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM)	100% Interim Electrical Test 1 (T1)		
GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects	 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015 		
100% Nondestructive Bond Pull, Method 2023	100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1 and 2)		
Sample - Wire Bond Pull Monitor, Method 2011			
Sample - Die Shear Monitor, Method 2019 or 2027			
100% Internal Visual Inspection, Method 2010, Condition A	100% Dynamic Burn-In, Condition D, 240 hrs., +125 ^o C or Equivalent, Method 1015		
100% Temperature Cycle, Method 1010, Condition C,			
10 Cycles	100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2)		
100% Constant Acceleration, Method 2001, Condition per Method 5004100% PIND, Method 2020, Condition A			
100% Serialization			
100% Initial Electrical Test (T0)			
100% Static Burn-In 1, Condition A or B, 24 hrs. min.,			
+125°C min., Method 1015			
	100% Data Package Generation (Note 5)		
NOTES:			

1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.

- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Die Characteristics

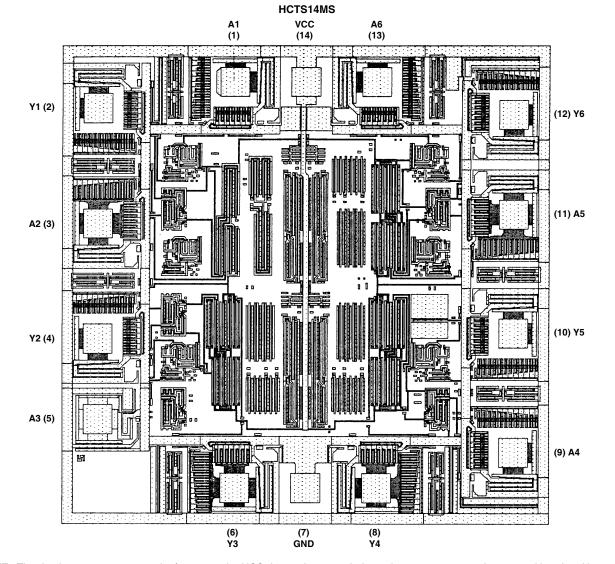
DIE DIMENSIONS:

87 x 88 mils 2,20 x 2.24mm

METALLIZATION:

Type: AlSi Metal Thickness: $11k\text{\AA} \pm 1k\text{\AA}$

GLASSIVATION:


Type: SiO₂ Thickness: 13kÅ \pm 2.6kÅ

WORST CASE CURRENT DENSITY: <2.0 x 10⁵A/cm²

BOND PAD SIZE:

100μm x 100μm 4 x 4 mils

Metallization Mask Layout

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS14 is TA14443A.